560 6Pt I/O PC Board Option OPERATIONS MANUAL

DOCUMENT NUMBER: 1860-3507-01 REV A

January 2014

Proprietary information. All rights reserved by Teledyne Monitor Labs. No part of this book may be reproduced or copied in any form or by any means – graphic, electronic or mechanical, including photocopying, taping, or information storage and retrieval systems – without written permission of the publisher.

Made in the United States of America

TABLE OF CONTENTS

P	age
1.0 OVERVIEW	1
2.0 Analog Output Description 2.1 Analog Output Measurement Units Selection 2.2 Analog Output Current Range Selection 2.3 Automatic Calibration Analog Output Sequence	1 2
3.0 Discrete Isolator Inputs AND JUMPER SETTINGS EFFECT ON ANALOG OUTPUTS 3.1 Other Jumpers That Effect Analog Outputs	
4.0 Relay Outputs	6
5.0 ANALOG OUTPUT ADJUSTMENT	6
6.0 DATA CABLES	7
TABLES 7 Figures	
2-3-1 Automatic Calibration Sequence	
2-3-2 560 Analog Output Cal Cycle Sequence	
3-0-1 Isolator Configuration Jumpers	
3-1-1 Output Jumper Configuration4-0-1 Relay Function Configuration Jumpers	
4-0-2 Relay Contact Configuration Jumpers	
5-0-1 Analog Output Channel Adjustment Details	
- · · · · · · · · · · · · · · · · · · ·	

APPENDIX A, Specifications

- SIX POINT I/O BOARD ANALOG OUTPUTS
- SIX POINT I/O BOARD DIGITAL INPUTS
- SIX POINT I/O BOARD RELAY OUTPUTS
- SIX POINT I/O BOARD DEFAULT JUMPER SETTINGS

APPENDIX B, DRAWINGS

Description

6PT I/O LOCATION 6PT I/O WIRING DIAGRAM

SIX POINT I/O BOARD FOR 560 SYSTEM

1.0 OVERVIEW

This manual describes the Six Point I/O Board (6PIO) in the *LightHawk*® 560 system. The Six Point I/O Board option (P/N 1860-3520-01) is used as a Direct Interface feature in the *LightHawk*® 560 where analog output and control signals are required directly from the Optical Head Assembly. The 6PIO is packaged under the Optical Head rear cover and is mounted vertically on the left side. External connections are in the Integral Junction Box. See Appendix B for Wiring Diagram connections and board location.

Many of the configuration details of the 6PIO Board are user selectable. Some parameters may be selected using the keypad and digital display of the Optical Head Assembly. Other details are configured by placement of small jumpers located on the circuit board.

2.0 ANALOG OUTPUT DESCRIPTION

There are two independently isolated analog outputs.

DAC 1 (Channel 1 or Out 1) During the NORMAL mode, the analog output will track Instantaneous values displayed in bank U0. During any CALIBRATION mode, the analog output will hold the last NORMAL mode value. (If CB=0)

DAC 2 (Channel 2 or Out 2) During the NORMAL mode, the analog output will track Selectable Average values displayed in bank U2. During any CALIBRATION mode, the analog output will hold the last Selectable average mode value. (If CB=0)

You can add CALIBRATION mode values to the normal DAC1or selectable average DAC2 channels. This is software selectable in the CB screen of the optical head keypad. 0=None, or no calibration values will be tracked. 1=DAC1 will collect calibration values. 2=DAC2 will collect calibration values. 3=DAC1 & DAC2 will collect calibration values. Calibration data scaling for Upscale, Zero and Dust Compensation will be the same as the Normal mode scaling.

EXPANDED SCALING for Zero/Dust: Normal scaling calibration data will be present on the analog output but Zero and Dust Compensation scaling will be expanded for better resolution. This can be changed in the FF bank at the optical head keypad. 0=NORMAL, 1=EXPANDED scaling. Consult the "Zero and Dust Compensation Calibration Scaling Table" for further details.

Zero and Dust Compensation Calibration Scaling Table

Optical Head FF value	Value at ZERO SCALE (4mA) During		Value	at FULL SCALE (20mA) During	
	Zero and Dust Compensation Modes		Z	Zero and Dust Com	p. Modes	
0=Normal Mode Scaling	Equal to 1	Equal to NORMAL mode ZERO SCALE		Equal to 1	NORMAL mode FU	JLL SCALE
	(typically	(typically 0% opacity)		(typically	100% opacity)	
1=Expanded mode scaling	-5%	-0.025	-25mg/m^3	+5%	+0.025	+25mg/m^3
	Opacity	Optical Density	Particulate	Opacity	Optical Density	Particulate
	Outputs	Outputs	Mass Outputs	Outputs	Outputs	Mass Outputs

NOTE: This table does not apply to full-time Zero and Dust Compensation outputs, in which case scaling is to the ZERO and FULL SCALE values and is independent of mode. This table applies only to outputs configured for opacity, optical density and particulate mass that are selected to contain time-multiplexed calibration data.

2.1 Analog Output Measurement Units Selection

The DAC 1 and 2 output units may be Opacity, Optical Density or Dust Mass depending on user selection. The output units are software selectable using the keypad and digital display. The Measurement Unit parameter value will dictate both the LED display and the analog output units. For example, if Measurement Unit (F0 location) = 1, the LED display and analog outputs will be in terms of Opacity. If the Measurement Unit = 2, both will display in units of Optical Density. If the Measurement Unit = 3, both will display in units of Particulate Mass.

Measurement full scale: This is software selectable at bank FE on the optical head keypad. Typically if units selected are opacity full scale is 100%, Optical density full scale is 2. Particulate Mass full scale units are mg/m³, full scale number is based on test data collected. Example; If particulate testing shows your average mg/m³ are 40 you may want your full scale to be 100. (See note)

NOTE: Banks A3-A8 on the optical head keypad can be used to setup a three point Optical Density to Dust Mass curve.

2.2 Analog Output Current Range Selection

Two output current options are available from the 6PIO Board (either 4-20mA or 0-20mA). This range will apply to any measurement unit configuration selected above.

Both analog channels are configured identically and the current range selected by the placement of jumper JU9 on the 6PIO Board. Placing the removable jumper between the two *leftmost* pins of JU9 (or the "4" position) will select the 4-20mA range. Placement of the jumper between the two rightmost pins of JU9 (or the "0" position) will select the 0-20mA range.

2.3 <u>Automatic Calibration Analog Output Sequence</u>

The order of the Automatic Calibration Analog Output Sequence is shown below. The duration of each is programmable in seconds.

Order	Description	Duration/ Parameter #	Opacity Scaling	O.D. Scaling	Dust Scaling
1 st	ZERO Calibration	Selectable/ C7	0-100	0-2	0-9999
2 nd	UPSCALE Calibration	Selectable/ C8	0-100	0-2	0-9999
3 rd	PLCF	Selectable/ C9	0-5	0-5	0-5
4 th	DUST Compensation	Selectable/ CA	-5 to +5	-0.022 to +0.022	

Table 2-3-1
Automatic Calibration Sequence

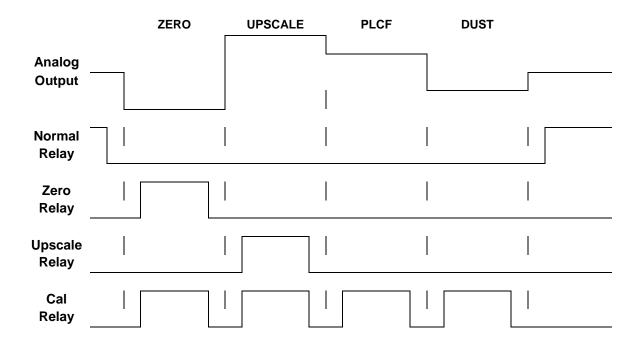


Figure 2-3-2
560 Analog Output Cal Cycle Sequence

PLCF scaling for the Analog Output Cal Cycle (AOCC) is fixed and not user adjustable due to security considerations. The scaling for PLCF is always 0-5.

3.0 DISCRETE ISOLATOR INPUTS AND JUMPER SETTINGS EFFECT ON ANALOG OUTPUTS

There are two discrete isolator inputs on the 6PIO Board. Both can be independently configured for operation from +5Vdc or Dry contacts: Jumper JU5 for isolator #1 and JU6 for isolator #2. They are also jumper configurable to perform the following functions:

- **FORCE UPSCALE:** (JU7 in position "A" and Isolator 1 engaged): The instrument goes into calibration UPSCALE mode. The calibration mechanism moves to the UPSCALE position. Normal sampling of stack data ceases. Analog output #2 follows the UPSCALE value. Analog output #1 holds the last stack value.
- **FORCE ZERO:** (JU8 in position "A" and Isolator 2 engaged): The instrument goes into calibration ZERO mode. The calibration mechanism moves to the ZERO position. Normal sampling of stack data ceases. Analog output #2 follows the ZERO value. Analog output #1 holds the last stack value read.

- FORCE UPSCALE and FORCE ZERO: (JU7 in position "A", JU8 in position "A", Isolators 1 and 2 engaged): The calibration mechanism moves to NORMAL position. Real time stack data appears on the LED readout and on analog output #1. Analog output #2 follows the DUST COMPENSATION value.
- **DUMP PLCF:** (JU7 in position "B" and Isolator 1 engaged or JU8 in position "B" and Isolator 2 engaged): The calibration mechanism moves to NORMAL position. Real time stack data appears on the LED readout and on analog output #1. Analog output #2 follows the PLCF value with a dedicated scaling: ZERO SCALE = 0 PLCF; FULL SCALE = 5 PLCF.
- **DUMP DUST:** (JU8 in position "C" and Isolator 2 engaged): The calibration mechanism moves to NORMAL position. Real time stack data appears on the LED readout and on analog output #1. Analog output #2 follows the DUST COMPENSATION value.
- **FORCE CALIBRATION:** (JU7 in position "C" and Isolator 1 engaged):
 - 1. The instrument first goes into calibration ZERO mode. The calibration mechanism moves to ZERO position. Analog output #1 holds the last stack value read. Analog output #2 follows the ZERO value.
 - 2. After a configurable amount of time, the instrument goes into UPSCALE mode. The calibration mechanism moves to UPSCALE position. Analog output #1 holds the last stack value read. Analog output #2 follows the UPSCALE value.
 - 3. After a configurable amount of time, the instrument goes into PLCF mode. The calibration mechanism moves to NORMAL position. Real time stack data appears on the LED readout and on analog output #1. Analog output #2 follows the PLCF value with a dedicated scaling: ZERO SCALE = 0 PLCF; FULL SCALE = 5 PLCF.
 - 4. After a configurable amount of time, the instrument goes into DUST COMPENSATION mode. The calibration mechanism remains in NORMAL position. Real time stack data appears on the LED readout and on analog output #1. Analog output #2 follows the DUST COMPENSATION value.
 - 5. After a configurable amount of time, the instrument goes into NORMAL mode. Real time stack data appears on the LED readout and on analog output #1. Analog output #2 follows the selectable average stack value.

Jumper Position	Function	Available Isolator
JU7 "A"	FORCE UPSCALE	ISO1
JU8 "A"	FORCE ZERO	ISO2
JU7 "B" or JU8 "B"	DUMP PLCF	ISO1 or ISO2
JU8 "C"	DUMP DUST	ISO2
JU7 "C"	FORCE CALIBRATION CYCLE	ISO1

Table 3-0-1 Isolator Configuration Jumpers

3.1 Other Jumpers That Effect Analog Outputs

- **TEST ZERO SCALE (JU10):** This jumper is used to set both analog outputs to ZERO SCALE when placed in position "Z" (rightmost).
- **TEST FULL SCALE (JU11):** This jumper is used to set both analog outputs to FULL SCALE (20mA) when placed in the "FS" position (rightmost).
- TEST ZERO SCALE AND TEST FULL SCALE: When both of these jumpers (JU10 and JU11) are actuated simultaneously, both the analog outputs go to MID SCALE (12mA if the JU9 jumper is set to position "4", 10mA if the JU9 jumper is set to position "0").
- **JU1, JU2, JU3 and JU4:** These jumpers are used to set up internal measurement parameters for the 6PIO Board. These must remain in the positions detailed below for all 6PIO configurations.

Jumper Position	Function
JU9 "0"	Analog Outputs 0-20 mA
JU9 "4"	Analog Outputs 4-20 mA
JU10 "Z"	Test Zero Scale
JU11 "FS"	Test Full Scale
JU10 "Z" and JU11 "FS"	Test Mid Scale
JU1 & JU3 = 0	Internal Ranging (do not move)
JU2 & JU4 = 1	Internal Ranging (do not move)

Table 3-1-1
Output Jumper Configuration

4.0 RELAY OUTPUTS

Two relays are available. Contacts are SPDT Form C. The configuration of the relays is jumper selectable per the following table.

K1 (JU12 position)	K2 (JU13 position)	Function
A	A	Calibration Data on Analog Outputs
В	В	Instrument Malfunction (Not Fail-safe)
C	С	Instantaneous Alarm 1 Actuated
D	D	Selectable Average Alarm 1 Actuated
Е	Е	UPSCALE Data on Analog Outputs
F	F	ZERO Data on Analog Outputs
G	G	Purge Failure
Н	Н	Excessive Dust Compensation

Table 4-0-1
Relay Function Configuration Jumpers

The contacts of each relay are jumper configurable for either N.O. or N.C. operation as per the following table.

RELAY	N.O.	N.C.
K1	JU14 "A"	JU14 "B"
K2	JU15 "A"	JU15 "B"

Table 4-0-2
Relay Contact Configuration Jumpers

5.0 ANALOG OUTPUT ADJUSTMENT

The output current from each channel of the 6PIO may be measured at test points located on the board. The 0-20 or 4-20mA currents may be measured using a digital voltmeter to read the voltage across a 100Ω resistor at test points TP3 and TP4 for analog channel #1 (DAC1). 2.00 VDC between TP3 and TP4 indicates a 20mA output current. 0.40 VDC corresponds to a 4mA output.

To do this, jumpers must be installed between pins 6 & 7 (DAC1) and pins 9 & 10 (DAC2) on TB2, located on the external interface PC board which is mounted inside the junction box. JU9 on the 6PT I/O PC Board must be in the "4" position. To adjust the 4mA output current, place jumper JU10 in the "Z" (Zero scale) position. Adjust Potentiometer R11 till .40 VDC is achieved. Put JU10 back in the "OFF" position and place JU11 in the "FS" (Full Scale) position. Adjust Potentiometer R10 till 2.00 VDC is achieved. Place JU10 back into the "Z" position. You should get a voltage of 1.2 VDC. This is the mid range scale. Return both JU10 & JU11 to there off positions.

The analog channel #2 (DAC2) output is measured between test points TP10 and TP11. Voltage readings on channel #2 are the same as channel #1.

$$2.00 \text{ VDC} = 20 \text{mA}$$

 $0.40 \text{ VDC} = 4 \text{mA}$

Jumpers must be moved per DAC1 instructions. Potentiometer R23 & R22 are used for adjustment.

Examples 1 and 2 below indicate how the Measurement Unit parameter, 6PIO Full Scale parameter and 6PIO jumper interactivity dictate the analog output response to the instrument measurement levels.

EXAMPLE 1:

If (Measurement Unit = 1) AND (6PIO Full Scale = 100) AND (0/4 6PIO Jumper = 4)):

4mA = 0% Opacity

20mA = 100% Opacity

EXAMPLE 2:

If (Measurement Unit = 2) AND (6PIO Full Scale = 2) AND (0/4 6PIO Jumper = 0):

0mA = Optical Density of 0

20mA = Optical Density of 2

	TEST POINTS	ZERO ADJUST	FULL SCALE ADJUST
Channel #1 (DAC1)	TP3 – TP4	R11	R10
Channel #2 (DAC2)	TP10 – TP11	R23	R22

Table 5-0-1 Analog Output Channel Adjustment Details

6.0 DATA CABLES

Two data cables are needed to interconnect the 6PIO to external devices. One is a 4 conductor #20 AWG (0.5 mm²) cable for connecting the contacts from the two relays. The other one Teledyne Monitor Labs recommends is a 6-pair #24 AWG (0.25 mm²) shielded cable for connection to the two analog outputs and two isolators. This would leave two pairs as spares or for future use. See Wiring Diagram in Appendix B for details on external connections to the 6PIO PC Board.

Appendix ASix Point I/O Board Specifications

SIX POINT I/O BOARD ANALOG OUTPUTS

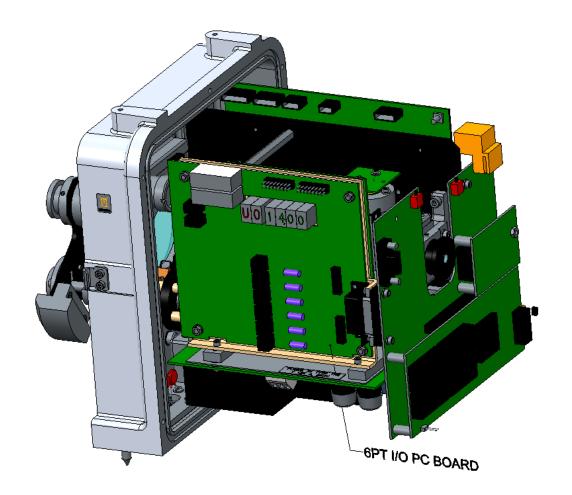
Number	2
Isolation Type	Optical & capacitive barriers; channel to channel, channel
	to circuit common & earth
Minimum Isolation Voltage	500Vpeak*, 500VDC*
Output Type	4-20mA with live 4mA zero, OR 0-20mA w/o live zero
Maximum Load Resistance	900 ohms
Maximum Offset	±0.05% of full scale
Total Output Error	±0.30% of full scale

SIX POINT I/O BOARD DIGITAL INPUTS

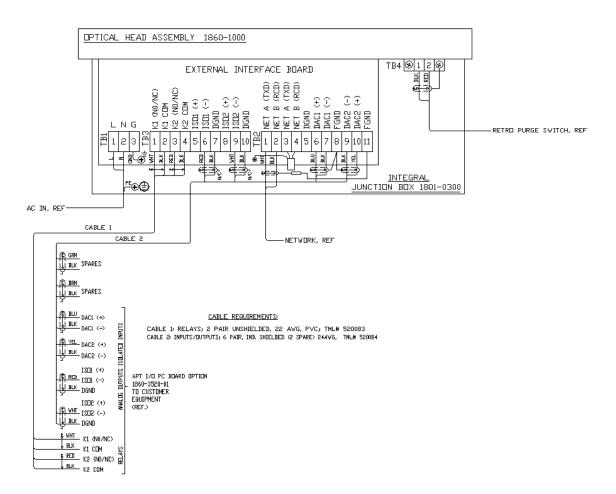
Number	2
Modes	Isolated and Non-isolated
Isolated Mode Minimum Isolation	500Vrms*
Voltage	
Isolated Mode Minimum Actuation	5VDC (user supplied)
Voltage	
Isolated Mode Maximum Actuation	24VDC (user supplied)
Voltage	
Isolated Mode Maximum Input Current	50mA @ 24VDC
Non-Isolated Mode Actuation	Dry contact closure
Condition	
Non-Isolated Mode Internal	5VDC
Operating Voltage	

SIX POINT I/O BOARD RELAY OUTPUTS

Number	2 SPST, N.O. (Single Pole Single Throw, Normally Open or Normally Closed [jumper selectable])
Minimum Isolation	500Vrms *
Maximum Contact Voltage	250VAC
Maximum Contact Current	1Amp AC, 1Amp DC


 $[\]star$ I/O wires with respect to earth (common mode).

SIX POINT I/O BOARD (1860-0700) DEFAULT JUMPERS (560DI only)


JU1	0 1	0	Hardware range for analog output
JU2	0 1	1	#1
JU3	0 1	0	Hardware range for analog output #2
JU4	0 1	1	
JU5	+5V DRY	DRY	Selects input #1 type
JU6	+5V DRY	DRY	Selects input #2 type
JU7	A (TOP=Force upscale) .	BOTTOM	Selects input #1 function
	B (MID=Dump _{PLCF}) .		
	C (BOTTOM=Force cal cycle)		
JU8	\mathbf{A} (TOP=Force $_{\mathrm{Zero}}$) .	TOP	Selects input #2 function
	$B (MID=Dump_{PLCF})$.		
	C (BOTTOM=Dump _{Dust})		
JU9	4 0	4	Software range. ma outputs
JU10	OFF ZERO	OFF	Test Zero
JU11	OFF FS	OFF	Test Full Scale
JU12	H G F E D C B A	A (Cal)	K1 relay closure condition
JU13	H G F E D C B A	B (Fault)	K2 relay closure condition
JU14	В А	A (NO)	K1 Relay operation NC/NO
JU15	В А	A (NO)	K2 Relay operation NC/NO

APPENDIX B

DRAWINGS

6PT I/O PC BOARD LOCATION

6PT I/O WIRING DIAGRAM